A forward-backward splitting algorithm for the minimization of non-smooth convex functionals in Banach space

نویسنده

  • Kristian Bredies
چکیده

We consider the task of computing an approximate minimizer of the sum of a smooth and non-smooth convex functional, respectively, in Banach space. Motivated by the classical forward-backward splitting method for the subgradients in Hilbert space, we propose a generalization which involves the iterative solution of simpler subproblems. Descent and convergence properties of this new algorithm are studied. Furthermore, the results are applied to the minimization of Tikhonov-functionals associated with linear inverse problems and semi-norm penalization in Banach spaces. With the help of BregmanTaylor-distance estimates, rates of convergence for the forward-backward splitting procedure are obtained. Examples which demonstrate the applicability are given, in particular, a generalization of the iterative soft-thresholding method by Daubechies, Defrise and De Mol to Banach spaces is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of solutions to a general system of varia- tional inclusions in Banach spaces and applications

In this paper, a general system of variational inclusions in Banach Spaces is introduced. An iterative method for finding solutions of a general system of variational inclusions with inverse-strongly accretive mappings and common set of fixed points for a λ-strict pseudocontraction is established. Under certain conditions, by forward-backward splitting method, we prove strong convergence theore...

متن کامل

Modified forward-backward splitting midpoint method with superposition perturbations for the sum of two kinds of infinite accretive mappings and its applications

In a real uniformly convex and p-uniformly smooth Banach space, a modified forward-backward splitting iterative algorithm is presented, where the computational errors and the superposition of perturbed operators are considered. The iterative sequence is proved to be convergent strongly to zero point of the sum of infinite m-accretive mappings and infinite [Formula: see text]-inversely strongly ...

متن کامل

A Generalized Forward-Backward Splitting

This paper introduces a generalized forward-backward splitting algorithm for finding a zero of a sum of maximal monotone operators B + ∑n i=1 Ai, where B is cocoercive. It involves the computation of B in an explicit (forward) step and of the parallel computation of the resolvents of the Ai’s in a subsequent implicit (backward) step. We prove its convergence in infinite dimension, and robustnes...

متن کامل

A Multi-step Inertial Forward-Backward Splitting Method for Non-convex Optimization

We propose a multi-step inertial Forward–Backward splitting algorithm for minimizing the sum of two non-necessarily convex functions, one of which is proper lower semi-continuous while the other is differentiable with a Lipschitz continuous gradient. We first prove global convergence of the algorithm with the help of the Kurdyka-Łojasiewicz property. Then, when the non-smooth part is also partl...

متن کامل

Backward-forward Algorithms for Structured Monotone Inclusions in Hilbert Spaces

In this paper, we study the backward-forward algorithm as a splitting method to solve structured monotone inclusions, and convex minimization problems in Hilbert spaces. It has a natural link with the forward-backward algorithm and has the same computational complexity, since it involves the same basic blocks, but organized differently. Surprisingly enough, this kind of iteration arises when st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008